Boosting Charge Carrier Transport by Layer‐Stacked MnxV2O6/V2C Heterostructures for Wide‐Temperature Zinc‐Ion Batteries

Author:

Zhang Feng1,Kang Yongchao1,Zhao Xiaoru1,Li Houzhen1,Dong Huitong1,Wei Wangran1,Sang Yuanhua1,Liu Hong12ORCID,Wang Shuhua1

Affiliation:

1. State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China

2. Jinan Institute of Quantum Technology Jinan 250101 P. R. China

Abstract

AbstractVanadium‐based materials are considered promising cathodes for high‐energy‐density zinc‐ion batteries (ZIBs) owing to their open skeleton structure and multielectron redox reactions. However, most vanadium‐based materials have low intrinsic conductivities and sluggish reaction kinetics, resulting in poor cycling properties. Herein, a layer‐stacked MnxV2O6+V2CTx (MVO+V2C) heterostructure cathode with high capacity and superior cyclic stability based on an electrostatic self‐assembly strategy is proposed. The abundant heterointerfaces between MVO and V2C dramatically enhanced the intrinsic conductivity of the composites. Moreover, the generation of built‐in electric fields at the layer‐stacked MVO/V2C heterointerface reduced the migration energy barrier of Zn2+, accelerated charge carrier transport, and enhanced the reaction kinetics of the cathode. In addition, the abundance of nano‐channels in the heterostructures facilitates rapid electrolyte transport in composites. Therefore, the MVO+V2C cathode showed a capacity of 389.4 mAh g−1 after 590 cycles at 0.5 A g−1 and 290.2 mAh g−1 after 6000 cycles at 5 A g−1, demonstrating its superior cycling stability. In particular, the assembled MVO+V2C batteries exhibited remarkable electrochemical performance at −20–40 °C, revealing its excellent wide‐temperature adaptability. This work offers important insights into the design of cathode materials for long‐lifespan and wide‐temperature ZIBs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3