A Scanning Microwave Impedance Microscopy Study of α‐In2Se3 Ferroelectric Semiconductor

Author:

Wang Lin1,Chen Han1,Chen Mingfeng1,Long Yinfeng1,Liu Kai1,Loh Kian Ping2ORCID

Affiliation:

1. School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China

2. Department of Applied Physics The Hong Kong Polytechnic University Hong Kong 999077 China

Abstract

AbstractVan der Waals ferroelectric semiconductors, which encompass both ferroelectricity and semiconductivity, have garnered intensive research interests for developing novel non‐volatile functional devices. Previous studies focus on ferroelectricity characterization and device demonstration, with little attention paid to the fundamental electronic properties of these materials and their functional structures, which are essential for both device design and optimization. In this study, scanning microwave impedance microscopy (sMIM) is utilized to investigate the ferroelectric semiconductor of α‐phase indium selenide (α‐In2Se3) and its synaptic field effect transistors. α‐In2Se3 nanoflakes of varying thicknesses are visualized through capacitive signal detection, whose responses are consistent with finite element simulations manifesting dependence on both flake thickness and its semiconductor property. sMIM spectroscopy performed on α‐In2Se3‐based metal‐oxide‐semiconductor (MOS) structures reveals typical MOS capacitance‐voltage characteristics, with additional hysteresis arising from the ferroelectric switching of α‐In2Se3. The local conductance state changes of synaptic α‐In2Se3 ferroelectric semiconductor transistors (FeSFET) in response to gate voltage stimuli are effectively detected by in situ sMIM, in good agreement with electrical device transport properties. This work deepens the understanding of ferroelectric semiconductor physics toward their practical device application.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3