Affiliation:
1. National Engineering Research Center for Carbohydrate Synthesis / Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
2. Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
3. Peking University Yangtze Delta Institute of Optoelectronics Nantong 226010 China
Abstract
AbstractThe buried interface has important effect on carrier extraction and nonradiative recombination of perovksite solar cells (PSCs). Herein, to inactivate the buried interfacial defects of perovskite and boost the crystallization quality of perovskite film, 3‐amino‐1‐adamantanol (AAD) serves as a pre‐buried interface modifier on nickel oxide (NiOx) surface to regulate the nucleation and crystallization process of perovskite precursor. The amino and hydroxyl groups in AAD molecule can synchronously coordinate with nickel ion (Ni3+) in NiOx and lead ion in perovskite, respectively. The dual action favors the ordered arrangement of AAD molecules between NiOx and perovskite, which not only enhances hole extraction in hole transport layer, but also provides active sites for homogeneous nucleation. Furthermore, AAD modifier blocks the unfavorable reaction between Ni3+ and perovskite, and effectively passivates the buried interfacial defects. The optimal inverted PSCs achieve a champion power conversion efficiency of 22.21% with negligible hysteresis, favorable thermal, optical, and long‐term stability. Thus, this strategy of modulating perovskite nucleation and crystallization by pre‐buried modifier is feasible for achieving efficient and stable inverted perovskite solar cells.
Funder
Education Department of Jiangxi Province
China Postdoctoral Science Foundation
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献