Bidirectional Synergistic Crystallization Strategy for Regulating Growth Kinetics Toward Highly Efficient and Stable Perovskite Solar Cells

Author:

Wei Dong1,Wang Mingliang1,Cai Shidong1,Meng Ning2,Li Yaoyao2,Gao Jie1,He Xiafeng1,Zhang Ruidan1,Cai Qingrui1,Chen Guilin1,Li Hongxiang3,Song Dandan2ORCID

Affiliation:

1. College of Physics and Energy Fujian Normal University FuZhou 350117 P. R. China

2. Key Laboratory of Luminescence and Optical Information Ministry of Education Beijing Jiaotong University Beijing 100044 P. R. China

3. College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China

Abstract

AbstractCrystalline quality is paramount for the performance and stability of perovskite films and devices. By regulating the nucleation and growth processes, it is possible to significantly enhance the crystalline quality. This work introduces a bidirectional synergistic crystallization strategy (BSC strategy) that synchronizes the crystallization kinetics across both the top and bottom surfaces of the perovskite film, thereby enhancing film quality and boosting the efficiency of perovskite solar cells (PSCs). Employing time‐resolved optical characterization techniques, it is demonstrated that the BSC strategy effectively mitigates the dissolution–recrystallization cycle of the perovskite nuclei and grains during annealing, accelerates the evaporation of residual solvents at the bottom of the perovskite film, and suppresses void formation at the buried interface. Depth‐resolved grazing‐incidence wide‐angle scattering analyses further confirm that the BSC strategy improves the crystalline quality of the perovskite film, promotes oriented growth, and minimizes internal residual strains caused by uneven growth dynamics. This approach results in a champion device efficiency of 24.98%, with the low voltage deficit of 360 mV. Moreover, device stability is markedly enhanced, after 1000 h of continuous light exposure, the efficiency remains over 91% of the initial value.

Funder

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3