Biphasic Nanoalloys‐Based Trifunctional Monolith for High‐Performance Flexible Zn‐Air Batteries and Self‐Driven Water Splitting

Author:

Yang Xuhuan1,Mao Haoning1,Zhou Zining2,Li Keer1,Li Chen1,Ye Qiong2,Liu Boping1,Fang Yueping1,Cai Xin1ORCID

Affiliation:

1. Key Laboratory for Biobased Materials and Energy of Ministry of Education Guangdong Laboratory for Lingnan Modern Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China

2. School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China

Abstract

AbstractSufficient integration of multiple active moieties and correlated heterostructure engineering are pivotal to optimize the reaction kinetics and the intrinsic activities of heterogeneous electrocatalysts. Herein, an integrated heterostructure of biphasic nanoalloys are constructed, encasing in in situ grown and interlaced nitrogen‐doped carbon nanoflake arrays (CoFe‐NiFe/NC). Well‐designed CoFe‐NiFe/NC owns more accessible active sites and interfacial conjugation effects, jointly accelerating the electron transfer and mass transport for multifunctional electrocatalysis. Such unconventional monolith delivers extraordinary trifunctional activities for hydrogen evolution reaction, oxygen evolution reaction (overpotential of 185 mV at 10 mA cm−2) and oxygen reduction reaction. The superior trifunctionality of CoFe‐NiFe/NC is rationalized with experimental and theoretical elucidation. Results reveal that the modulated electronic synergism between the Ni, Fe‐assisted Co sites and the adjacent N‐bridged carbon matrix decisively favors the appropriate binding of intermediates for promoted redox kinetics. Consequently, stand‐alone CoFe‐NiFe/NC cathode contributes to high‐performance aqueous/flexible zinc‐air batteries (ZABs), exhibiting high power/specific energy and excellent cycling stability. Remarkably, CoFe‐NiFe/NC‐based alkaline water electrolyzer requires merely 1.51 V to reach 10 mA cm−2, and a self‐driven water splitting system yields a high H2 evolution rate. This unique heterostructure monolith would open up opportunities for developing high‐efficiency multifunctional catalysts and advanced energy utilization devices.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3