Tough Transient Ionic Junctions Printed with Ionic Microgels

Author:

Huo Ran1ORCID,Bao Guangyu1ORCID,He Zixin1,Li Xuan1,Ma Zhenwei12,Yang Zhen1,Moakhar Roozbeh3,Jiang Shuaibing1,Chung‐Tze‐Cheong Christopher1,Nottegar Alexander1,Cao Changhong1,Mahshid Sara3,Li Jianyu14ORCID

Affiliation:

1. Department of Mechanical Engineering McGill University 817 Sherbrooke Street West Montreal QC H3A 0C3 Canada

2. Department of Pathology and Laboratory Medicine University of British Columbia 2211 Wesbrook Mall Vancouver BC V6T 1Z7 Canada

3. Department of Bioengineering McGill University 3480 University Montreal QC H3A 0E9 Canada

4. Department of Biomedical Engineering McGill University 3775 rue University Montreal QC H3A 2B4 Canada

Abstract

AbstractEmerging soft ionotronics better match the human body mechanically and electrically compared to conventional rigid electronics. They hold great potential for human‐machine interfaces, wearable and implantable devices, and soft machines. Among various ionotronic devices, ionic junctions play critical roles in rectifying currents as electrical p–n junctions. Existing ionic junctions, however, are limited in electrical and mechanical performance, and are difficult to fabricate and degrade. Herein, the design, fabrication, and characterization of tough transient ionic junctions fabricated via 3D ionic microgel printing is reported. The 3D printing method demonstrates excellent printability and allows one to fabricate ionic junctions of various configurations with high fidelity. By combining ionic microgels, degradable networks, and highly charged biopolymers, the ionic junctions feature high stretchability (stretch limit 27), high fracture energy (>1000 Jm−2), excellent electrical performance (current rectification ratio >100), and transient stability (degrade in 1 week). A variety of ionotronic devices, including ionic diodes, ionic bipolar junction transistors, ionic full‐wave rectifiers, and ionic touchpads are further demonstrated. This study merges ionotronics, 3D printing, and degradable hydrogels, and will motivate the future development of high‐performance transient ionotronics.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3