Bioinspired Printable Tough Adhesives with In Situ Benignly Triggered Mechanical Enhancements

Author:

Ma Zhenwei12ORCID,Huo Ran1ORCID,Nottegar Alexander1,Chung‐Tze‐Cheong Christopher1,Gao Qiman3ORCID,Lan Xiaoyi1,Gao Zu‐hua2,Li Jianyu14ORCID

Affiliation:

1. Department of Mechanical Engineering McGill University 817 Sherbrooke Street West Montreal QC H3A 0C3 Canada

2. Department of Pathology and Laboratory Medicine University of British Columbia 2211 Wesbrook Mall Vancouver BC V6T 1Z7 Canada

3. Department of Diagnostic and Biological Sciences School of Dentistry University of Minnesota Minneapolis MN 55414 USA

4. Department of Biomedical Engineering McGill University 3775 rue University Montreal QC H3A 2B4 Canada

Abstract

AbstractAdhesives can intimately connect humans to machines, seamlessly bond diverse tissues in the human body, and manage various diseases. However, the precise spatial control of wet and tough adhesion of biocompatible hydrogels on biological tissues remains a major challenge. Inspired by the bioglue secreted by sandcastle worms, the design of printable tough adhesives (PTAs) is proposed, a supramolecular hydrogel that can be printed into defined structures, in situ mechanically reinforced into a tough matrix with physiologically relevant benign triggers, and strongly adhere to diverse substrates. With carefully selected polymer components and ratios, it is discovered that the 3D printed PTAs can achieve a marked increase in toughness, tensile strength, and stiffness after being immersed in water/saline solution or attached to biological tissues. To assess the robust toughening mechanism triggered by the supramolecular interactions, the effects of polymer content and pH on the mechanical performance of PTAs and the kinetics of their triggered reinforcement are thoroughly investigated. The potential of PTAs is further demonstrated for manufacturing tough connective tissue mimetics, controlling patterned bioadhesion, and designing programmable 4D soft robotics. The bioinspired, printable, benignly triggerable, and adhesive supramolecular PTAs are expected to find broad applications in engineering and medicine.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3