Affiliation:
1. Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea
2. Department of Organic and Nano Engineering and Human‐Tech Convergence Program Hanyang University Seoul 04763 Republic of Korea
3. Department of Materials Science and Engineering Korea National University of Transportation Chungju 27469 Republic of Korea
Abstract
AbstractPerovskite nanocrystals (PNCs) are attractive photoactive materials in various optoelectronic devices including light‐emitting diodes, solar cells, and photodetectors. However, the weakly bound surface ligands on PNCs reduce colloidal stability and cause film formation and patterning difficulties, severely restricting their practical applications. Herein, a rationally designed photocrosslinkable zwitterionic (PZ) ligand is introduced to obtain directly patternable CsPbBr3 PNCs with enhanced colloidal stability, optical properties, and self‐assembly propensity. The PZ ligands strongly interact with the pre‐synthesized PNCs in solution, substantially replacing the original capping ligands and effectively passivating surface defects. This surface engineering induces strong electrostatic interactions between the PNCs, enabling the fabrication of densely packed CsPbBr3 PNC films. Furthermore, the methacrylate group of the PZ ligands serves as a bridge for active radical propagation in the ligand shells around the PNCs upon UV exposure. Accordingly, high‐resolution direct photopatterning can be achieved through ligand crosslinking, and the resulting PNC patterns (minimum line spacing of 4 µm) maintain optical stability for over 2 weeks. Therefore, this study demonstrates that a tailored ligand design strategy enables the simultaneous achievement of high colloidal stability, optical properties, photopatternability, and self‐assembly propensity and has considerable potential to be extended to other PNC materials.
Funder
National Research Foundation of Korea
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献