Affiliation:
1. School of Chemical Engineering and Technology Xi'an Jiaotong University No. 28, Xianning West Road Xi'an Shaanxi 710049 China
2. Mechanical and Construction Engineering, Faculty of Engineering and Environment Northumbria University Newcastle upon Tyne NE1 8ST UK
3. Department of Materials Science and Engineering University of California, Los Angeles (UCLA) Los Angeles CA 90095 USA
4. Department of Chemical and Materials Engineering University of Alberta Alberta T6G 1H9 Canada
Abstract
AbstractA seamless and tough interface to integrate incompatible/immiscible soft materials is highly desired for flexible/wearable electronics and many soft devices with multi‐layer structures. Here, a surfactant‐mediated interfacial chemistry is introduced to achieve seamless and tough interfaces in soft multi‐layer structures, with an ultra‐high interfacial toughness up to ≈1300 J m−2 for the architectural gel hybrid (AGH). The reversible noncovalent interfacial interactions efficiently dissipate energy at the interface, thereby providing excellent durability. The interfacial toughness only decreases by ≈6.9% after 10 000 tensile cycles. This strategy can be universally applied to hybrid systems with various interfaces between an interior hydrogel (PAA, PVA, PAAm, and gelatin) and an exterior hydrophobic soft matter (ionogel, lipogel and elastomer). The AGH‐based mechano‐sensor presents high robustness and stability in a wide range of conditions, including open air, underwater, and various solvents and temperatures. Epidermal bio‐monitoring, tactile trajectory, and facial expression recognition are demonstrated using the AGH sensors in various environments. A rich set of electrophysiological signals of high quality are acquired.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Engineering and Physical Sciences Research Council
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献