Design of Thermal Interface Materials with Excellent Interfacial Heat/Force Transfer Ability via Hierarchical Energy Dissipation

Author:

Zeng Chen12,Zeng Xiangliang1,Cheng Xiaxia1,Pang Yunsong1,Xu Jianbin3,Sun Rong1,Zeng Xiaoliang1ORCID

Affiliation:

1. State Key Laboratory of Materials for Integrated Circuits Shenzhen Institute of Advanced Electronic Materials Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. Department of Electronics Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong 999077 China

Abstract

AbstractInterfaces play an important role in the heat and stress transfer within applications such as electronic cooling. The coexistence of apparently contradictory properties between heat dissipation and adhesion at interfaces poses a constant challenge for existing interface materials. Herein, a thermal interface material is reported, consisting of epoxy‐functionalized polydimethylsiloxane and aluminum fillers with excellent interfacial heat/force transfer ability. This material optimizes the combination of thermal conductivity of 3.46 W m−1 K−1 and adhesion energy of 1.17 kJ m−2. Using two viscoelastic models, the excellent interfacial force transfer ability is attributed to a hierarchical energy dissipation via the introduction of borate ester bonds and the aluminum filler networks. A simple kinetic bond model demonstrates that the borate ester bonds increase molecular chain segment mobility, allowing full extension at debonding interface for stress dispersion and efficient energy dissipation. The aluminum filler networks not only facilitate thermal transfer, but also dissipate the mechanical energy during filler network destruction due to the bond breakage between fillers. The excellent heat dispassion and mechanical stability are further demonstrated when this thermal interface material is used in flexible light emitting diodes and high‐power chips. This work provides a new strategy for balancing interfacial heat and force transfer.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Science and Technology Planning Project of Shenzen Municipality

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3