Versatile Quasi‐Solid Ionic Conductive Elastomer Inspired by Desertification Control Strategy for Soft Iontronics

Author:

Zhou Rong12,Jin Yong12ORCID,Zeng Wenhua12,Jin Hongyu3,Shi Liangjie12,Bai Long12,Shang Xiang12

Affiliation:

1. Key Laboratory of Leather Chemistry and Engineering Ministry of Education Sichuan University Chengdu 610065 P. R. China

2. National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu 610065 P. R. China

3. Department of Liver Surgery & Liver Transplantation State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu 610041 P. R. China

Abstract

AbstractIonic conductors, such as hydrogels, ionogels, and eutectogels, have attained considerable research interest in various advanced application scenarios. However, such ionic conductors still suffer from the restriction of inherent liquid compositions, which may leak or evaporate. Herein, inspired by the control strategy of desertification caused by soil erosion, a novel internal‐external dual enhancement design strategy, i.e., increasing the interaction between the filler itself and its matrix, is proposed to firmly embed the deep eutectic solvent (DES) into polyurethane (PU) to prevent liquid leakage, such that the prepared ionic conductive elastomers (PU‐DESs) are quasi‐solid. The PU‐DESs exhibit marvelous versatility including high stretchability, tensile strength, toughness, self‐healing efficiency, antibacterial ability, ionic conductivity, and excellent freezing tolerance. More intriguingly, benefiting from their quasi‐solid feature, PU‐DESs are endowed with long‐term environmental stability. Thanks to these superb versatile features, PU‐DESs are further successfully applied in the wearable sensor and triboelectric nanogenerator (TENG) for monitoring human motions and converting mechanical energy into electrical energy, breaking away from the limitations of previous most soft iontronics such as liquid leakage or evaporation and weak mechanical strength. Hence, this study establishes an effective material design strategy for various soft iontronics demanding environmental stability and durability.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3