Tidal Mixed Ionic/Electronic Conductive Interlayer Enables Supersmooth Lithium Deposition for Stable Lithium Metal Batteries

Author:

Yao Haidi12,Niu Fang2,Ma Changjing2,You Xingzi2,Ning De2,Qian Jiutong2,Wang Man3,Duan Qiange2,Yang Cheng12,Wu Qilong2,Wang Jun4,Zhang Jie2,Lu Zhenhuan1,Yang Chunlei2ORCID,Wu Wei2ORCID

Affiliation:

1. Guangxi Key Laboratory of Electrochemical and Magneto‐Chemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 P. R. China

2. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 P. R. China

3. Li Yuan (Shenzhen) Scientific Research Co., LTD Shenzhen 518060 P. R. China

4. School of Innovation and Entrepreneurship Southern University of Science and Technology Shenzhen 518055 P. R. China

Abstract

AbstractLithium metal is the ultimate anode material for Li‐based battery chemistries with high energy density. However, inhomogeneous charge distribution derived from the unbalanced ion/electron transport is usually generated at the electrode/electrolyte interface, leading to uncontrollable dendrite growth with poor reversibility. Herein, a mixed ionic/electronic conductive (MIEC) interlayer activated from the in situ conversion and nano‐alloying reactions between the sputtered AlN arrays and metallic Li is efficiently constructed on the Li surface via facile mechanical calendaring. The 3D interconnected polyimide scaffolds with the extensive Li3N/Li9Al4 dual‐decoration promote charge redistribution while enhancing electrochemical kinetics. The significantly reduced nucleation/plateau overpotentials, the overwhelming bottom‐up lithium growth pattern derived from the tidal MIEC interlayer, combined with the inorganics‐dominating solid electrolyte interphase synergistically regulates the uniform Li nucleation/growth. As demonstrated, a prolonged lifespan of the symmetric cell over 7500 h with an ultralow polarization of 12 mV is achieved at 5 mA cm−2@5 mAh cm−2, further improving the rate capability and cycling performance of LiFePO4‐based practical full cells with a capacity retention of 85.4% after 220 cycles. The proposed approach is also applicable to match the roll‐to‐roll production process, presenting an efficient strategy to realize the high‐performance composite anode of industry‐adaptable potential.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3