Template‐Made Ultrahigh, Broadband, and Omnidirectional Light Absorption Surface for Enhanced Solar Energy Harvesting and Utilization

Author:

Li Huiyong12,Shen Chen2,Qiu Xiongying2,Zhou Siyuan23,Liu Mengxi23,Li Chun1ORCID,Zhang Hui2ORCID,Zhang Zhong4

Affiliation:

1. Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Laboratory of Flexible Electronics Technology Department of Chemistry Tsinghua University Beijing 100084 China

2. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China

3. University of Chinese Academy of Sciences Beijing 100049 China

4. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics University of Science and Technology of China Hefei 230027 China

Abstract

AbstractThe practical application of solar energy harvesting urgently calls for the facile preparation of high‐performance ultrablack surfaces with broadband and omnidirectional light absorption performance; however, some roadblocks still need to meet these requirements simultaneously. Herein, cone‐array ultrablack (CAUB) surfaces are prepared by combining feasible template replication and blade coating techniques. The elaborate micro‐sized cone structure and high absorptive materials (polydimethylsiloxane@carbon black, PDMS@CB) offer the CAUB extremely high, broadband, and omnidirectional light absorption over the solar spectrum with an average absorbance of 99.35%. Under one sun irradiation, the CAUB can efficiently absorb solar energy, reaching a surface temperature as high as 75 °C. A solar‐thermal‐electric generator (STEG) made from the CAUB film demonstrates real‐time solar‐heat‐electric conversion, achieving a high output power density of 330 µW cm−2. The CAUB film possesses excellent water repellency, flexibility, chemical solvent resistance, and potential for large‐scale production, satisfying the application requirements of solar energy harvesting and utilization.

Funder

Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3