High Frequency Solution‐Processed Organic Field‐Effect Transistors with High‐Resolution Printed Short Channels

Author:

Losi Tommaso12,Witczak Łukasz3,Łysień Mateusz3,Rossi Pietro12,Moretti Paola14,Bertarelli Chiara14,Mattoli Virgilio5,Caironi Mario1ORCID

Affiliation:

1. Center for Nano Science and Technology Istituto Italiano di Tecnologia via Rubattino 81 Milan 20134 Italy

2. Physics Department Politecnico di Milano Piazza Leonardo da Vinci 32 Milan 20133 Italy

3. XTPL S.A. Stabłowicka 147 Dolnoslaskie 54–066 Poland

4. Dipartimento di Chimica Materiali e Ing. Chimica “G. Natta” Politecnico di Milano Piazza L. da Vinci 32 Milan 20133 Italy

5. Centre for Materials Interfaces Istituto Italiano Di Tecnologia Viale Rinaldo Piaggio 34 Pontedera Pisa 56025 Italy

Abstract

AbstractOrganic electronics is an emerging technology that enables the fabrication of devices with low‐cost and simple solution‐based processes at room temperature. In particular, it is an ideal candidate for the Internet of Things since devices can be easily integrated in everyday objects, potentially creating a distributed network of wireless communicating electronics. Recent efforts allowed to boost operational frequency of organic field‐effect transistors (OFETs), required to achieve efficient wireless communication. However, in the majority of cases, in order to increase the dynamic performances of OFETs, masks based lithographic techniques are used to reduce device critical dimensions, such as channel and overlap lengths. This study reports the successful integration of direct written metal contacts defining a 1.4 µm short channel, printed with ultra‐precise deposition technique (UPD), in fully solution fabricated n‐type OFETs. An average transition frequency as high as 25.5 MHz is achieved at 25 V. This result demonstrates the potential of additive, high‐resolution direct‐writing techniques for the fabrication of organic electronics operating in the high‐frequency regime.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3