O, N‐Codoped, Self‐Activated, Holey Carbon Sheets for Low‐Cost And High‐Loading Zinc‐Ion Supercapacitors

Author:

Xu Zhixiao1ORCID,Sun Zhe1,Shan Janay1,Jin Song23,Cui Jiayao1,Deng Zhiping1ORCID,Seo Min Ho4ORCID,Wang Xiaolei1ORCID

Affiliation:

1. Department of Chemical and Materials Engineering University of Alberta 9211‐116 Street NW. Edmonton Alberta T6G 1H9 Canada

2. School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) 261 Cheomdan‐gwagiro Gwangju 500‐712 Republic of Korea

3. Department of Hydrogen Energy Materials Surface Technology Division Korea Institute of Materials Science (KIMS) 797 Changwondaero Seongsangu Changwon Gyeongnam 51508 Republic of Korea

4. Department of Nanotechnology Engineering Pukyong National University 45 Yongso‐ro, Nam‐gu Busan 48547 Republic of Korea

Abstract

AbstractLow‐cost and high‐loading cathodes are crucial for practical application of zinc‐ion supercapacitors (ZICs) but achieving optimal performance in high‐loading electrodes faces challenges due to sluggish ion transport, increased resistance, and unstable structure. Guided by theoretical calculations, high‐loading carbon cathodes based on holey activated carbon sheets (HACS) are fabricated from a carefully chosen molecule. A simple pyrolysis‐leaching treatment transformed the molecule into HACS with large surface area, hierarchical porous structure, and electroactive oxygen/nitrogen dopants. When combined with an aqueous binder, the optimized HACS‐based high‐loading electrode (16.1 mg cm−2) exhibits high‐capacitance (454 F g−1 ) and fast‐rate (1 A g−1) characteristics under lean electrolyte (6.2 µL mg−1). More impressively, HACS is dry‐pressed into free‐standing thick electrodes up to 35.4 mg cm−2 and corresponding practical ZIC under limited Zn and low N/P ratio demonstrates ultrahigh areal capacitance (9 F cm−2) and energy density (3.47 mWh cm−2). The outstanding performance can be attributed to fast ion transport enabled by through‐plane pores of HACS, as well as abundant double‐layer and redox‐active surfaces from favorable heteroatom‐doped porous nanosheets. With its cost‐effectiveness, elemental abundance, and structural tunability, this molecular carbon strategy offers a platform for making self‐activated carbon electrodes at the molecular level towards practical supercapacitors.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada First Research Excellence Fund

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3