Affiliation:
1. School of Chemical Engineering and Technology Xinjiang University Urumqi 830017 China
2. International Iberian Nanotechnology Laboratory Avenide Mestre Jose Veiga Braga 4715‐330 Portugal
3. State Key Laboratory of Chemical Resource Engineering College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 China
Abstract
AbstractThe development of aqueous Zn‐based energy storage systems is plagued by poor cyclability and limited operating temperatures caused by Zn anode issues and highly active water. Herein, a frost‐tolerant hydrogel electrolyte (PABCHE) promoted by hydroxyl‐rich β‐cyclodextrin (β‐CD) and zwitterionic betaine (BA) additives is fabricated in situ to protect Zn anodes and enhance low‐temperature adaptability. Both additives synergistically disrupt the hydrogen‐bonding network between water molecules to remarkably reduce the freezing point of PABCHE and alleviate water‐associated side effects. Zwitterionic BA constructs ion‐migration channels and regulate Zn2+ solvation structure, promoting uniform and rapid transport of Zn2+. Additionally, PABCHE renders the Zn2+ homoepitaxially depositing along the (002) plane to achieve dendrite‐free Zn anodes. As a result, versatile PABCHE enables Zn//Zn cells to cycle stably for 1100 and 3600 h at 20 and −20 °C, respectively. Furthermore, the Zn‐ion hybrid capacitors optimized by PABCHE deliver favorable cyclability over 30000 cycles at 20 °C (with a capacity retention of 81.8%) and −20 °C (with a capacity retention of 84.2%). Additionally, PABCHE can be applied as a flexible strain sensor for real‐time monitoring of physiological activities. This work offers valuable insights for developing antifreeze hydrogel electrolytes toward applications of dendrite‐free low‐temperature Zn‐based devices and strain sensors.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China