Anion‐Regulated Electric Double Layer and Progressive Nucleation Enable Uniform and Nanoscale Zn Deposition for Aqueous Zinc‐Ion Batteries

Author:

Wang Ziqing1ORCID,Diao Jiefeng12ORCID,Henkelman Graeme12ORCID,Mullins C. Buddie134ORCID

Affiliation:

1. Department of Chemistry The University of Texas at Austin Austin TX 78712 United States

2. Oden Institute for Computational Engineering and Sciences The University of Texas at Austin Austin TX 78712 United States

3. McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 United States

4. Texas Materials Institute and Center for Electrochemistry The University of Texas at Austin Austin TX 78712 United States

Abstract

AbstractAqueous zinc‐ion batteries have been regarded as safe and cheap energy storage devices. However, severe zinc dendrite growth and water decomposition limit the sustainability of aqueous zinc‐ion batteries. Herein, sodium‐difluoro(oxalato)borate (NaDFOB) is introduced into ZnSO4 electrolyte to modify the electric double layer (EDL) and the nucleation mechanism. Electrochemical tests and density functional theory calculations reveal that DFOB adsorbs on the zinc electrode to form a water‐poor EDL, effectively suppressing side reactions. Notably, a detailed investigation of zinc deposition demonstrates that the adsorbed DFOB ions induce progressive nucleation, resulting in nanoscale zinc nuclei and uniform zinc growth. Additionally, the adsorbed DFOB ions decompose into a solid electrolyte interphase, further protecting the zinc electrode. Consequently, the Zn/Zn symmetric cell using ZnSO4/NaDFOB electrolyte can cycle for over 500 h at 5 mA cm−2 to reach a capacity of 10 mAh cm−2, while a Zn/Cu half cell maintains an average Coulombic efficiency of 99.3% over 400 cycles. A high capacity retention of 93.0% with a capacity of 250 mAh g−1 at 0.2 A g−1 is achieved in the ZnSO4/NaDFOB electrolyte in full cell cycling. These findings highlight the impact of anion‐modified EDL and progressive nucleation on achieving highly uniform zinc deposition.

Funder

Welch Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3