Multi‐Group Polymer Coating on Zn Anode for High Overall Conversion Efficiency Photorechargeable Zinc‐Ion Batteries

Author:

Chen Ming1,Guo Xiaojun1,Jiang Xiao2,Farhadi Bita2,Guo Xin1,Zhu Yan2,Zhang Haoxiang23ORCID,Liu Shengzhong (Frank)234ORCID

Affiliation:

1. School of Electric Power, Civil Engineering and Architecture, College of Physics and Electronics Engineering, State Key Laboratory of Quantum Optics and Quantum Optics Devices Shanxi University Taiyuan 030006 China

2. Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 Liaoning China

3. China Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

4. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal

Abstract

AbstractThe solar‐driven photorechargeable zinc‐ion batteries have emerged as a promising power solution for smart electronic devices and equipment. However, the subpar cyclic stability of the Zn anode remains a significant impediment to their practical application. Herein, poly(diethynylbenzene‐1,3,5‐triimine‐2,4,6‐trione) (PDPTT) was designed as a functional polymer coating of Zn. Theoretical calculations demonstrate that the PDPTT coating not only significantly homogenizes the electric field distribution on the Zn surface, but also promotes the ion‐accessible surface of Zn. With multiple N and C=O groups exhibiting strong adsorption energies, this polymer coating reduces the nucleation overpotential of Zn, alters the diffusion pathway of Zn2+ at the anode interface, and decreases the corrosion current and hydrogen evolution current. Leveraging these advantages, Zn‐PDPTT//Zn‐PDPTT exhibits an exceptionally long cycling time (≥4300 h, 1 mA cm−2). Zn‐PDPTT//AC zinc‐ion hybrid capacitors can withstand 50,000 cycles at 5 A/g. Zn‐PDPTT//NVO zinc‐ion battery exhibits a faster charge storage rate, higher capacity, and excellent cycling stability. Coupling Zn‐PDPTT//NVO with high‐performance perovskite solar cells results in a 13.12 % overall conversion efficiency for the photorechargeable zinc‐ion battery, showcasing significant value in advancing the efficiency and upgrading conversion of renewable energy utilization.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3