Dual‐Site Doping and Low‐Angle Grain Boundaries Lead to High Thermoelectric Performance in N‐Type Bi2S3

Author:

Yang Jian1,Ye Haolin2,Zhang Xiangzhao1,Miao Xin3,Yang Xiubo4,Xie Lin5,Shi Zhongqi6,Chen Shaoping3,Zhou Chongjian2,Qiao Guanjun1,Wuttig Matthias78,Wang Li2,Liu Guiwu1,Yu Yuan8ORCID

Affiliation:

1. School of Materials Science and Engineering Jiangsu University Zhenjiang 212013 China

2. State Key Laboratory of Solidification Processing and Key Laboratory of Radiation Detection Materials and Devices Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an 710072 China

3. School of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 China

4. Analytical & Testing Center Northwestern Polytechnical University Xi'an 710072 China

5. Department of Physics Southern University of Science and Technology Shenzhen 518055 China

6. State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China

7. PGI 10 (Green IT) Forschungszentrum Jülich GmbH 52428 Jülich Germany

8. Institute of Physics (IA) RWTH Aachen University 52056 Aachen Germany

Abstract

AbstractBismuth sulfide (Bi2S3) is a promising thermoelectric material with earth‐abundant, low‐cost, and environment‐friendly constituents. However, it shows poor thermoelectric performance due to its extremely low electrical conductivity derived from the low electron concentration. Here, a high‐performance Bi2S3‐based material is reported to benefit from the Fermi level tuning by Ag and Cl co‐doping and defect engineering by introducing dense low‐angle grain boundaries. Both Ag and Cl act as donors in Bi2S3, upshifting the Fermi level. This increases the electron concentration without degrading the electron mobility, thereby obtaining improved electrical conductivity. The electron localization function (ELF) contour map indicates that interstitial Ag causes electron delocalization, showing higher electron mobility in Bi2S3. More importantly, dense low‐angle grain boundaries block phonon propagation, yielding an ultralow lattice thermal conductivity of 0.30 W m−1 K−1. Consequently, a record ZT value of ≈0.9 at 676 K is achieved in the Bi2Ag0.01S3‐0.5%BiCl3 sample.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Deutsche Forschungsgemeinschaft

High Level Innovation and Entrepreneurial Research Team Program in Jiangsu

Qinglan Project of Jiangsu Province of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3