Copper‐Nanoparticle‐Decorated Hydrothermal Carbonaceous Carbon–Polydimethylsiloxane Nanocomposites: Unveiling Potential in Simultaneous Light‐Driven Interfacial Water Evaporation and Power Generation

Author:

Fattahimoghaddam Hossein1,Kim In Ho2,Dhandapani Keerthnasre3,Jeong Yong Jin23ORCID,An Tae Kyu14

Affiliation:

1. Chemical Industry Institute Korea National University of Transportation Chungju 27469 South Korea

2. Department of Materials Science and Engineering Korea National University of Transportation Chungju 27469 South Korea

3. Department of IT ‐ Energy Convergence (BK21 PLUS) Korea National University of Transportation Chungju 27469 South Korea

4. Department of Polymer Science and Engineering Korea National University of Transportation Chungju 27469 South Korea

Abstract

AbstractThis study introduces a hydrothermal synthesis method that uses glucose and Cu2+ ions to create a Cu‐nanoparticle (NP)‐decorated hydrothermal carbonaceous carbon hybrid material (Cu–HTCC). Glucose serves both as a reducing agent, efficiently transforming Cu2+ ions into elemental Cu nanostructures, and as a precursor for HTCC microstructures. An enhanced plasmon‐induced electric field resulting from Cu NPs supported on microstructure matrices, coupled with a distinctive localized π‐electronic configuration in the hybrid material, as confirmed by X‐ray photoelectron spectroscopic analysis, lead to the heightened optical absorption in the visible–near‐infrared range. Consequently, flexible nanocomposites of Cu–HTCC/PDMS and Cu–HTCC@PDMS (PDMS = polydimethylsiloxane) are designed as 2 and 3D structures, respectively, that exhibit broad‐spectrum solar absorption. These composites promise efficient photo‐assisted thermoelectric power generation and water evaporation, demonstrating commendable mechanical stability and flexibility. Notably, the Cu–HTCC@PDMS composite sponge simultaneously exhibits commendable efficiency in both water evaporation (1.47 kg m−2 h−1) and power generation (32.1 mV) under 1 sunlight illumination. These findings unveil new possibilities for innovative photothermal functional materials in diverse solar‐driven applications.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3