Tuning the Surface Energy of Hole Transport Layers Based on Carbazole Self‐Assembled Monolayers for Highly Efficient Sn/Pb Perovskite Solar Cells

Author:

Pitaro Matteo1ORCID,Alonso Javier E. Sebastián12ORCID,Di Mario Lorenzo1ORCID,Romero David Garcia1ORCID,Tran Karolina1ORCID,Kardula Jane3ORCID,Zaharia Teodor1ORCID,Johansson Malin B.2ORCID,Johansson Erik M. J.2ORCID,Chiechi Ryan C.34ORCID,Loi Maria A.1ORCID

Affiliation:

1. Photophysics and Optoelectronics Group Zernike Institute for Advanced Materials University of Groningen Groningen 9747 AG Netherlands

2. Department of Chemistry Ångström Laboratory Physical Chemistry Uppsala University Uppsala 751 20 Sweden

3. Stratingh Institute for Chemistry Zernike Institute for Advanced Materials University of Groningen Groningen 9747 AG Netherlands

4. Department of Chemistry North Carolina State University Raleigh 27695 USA

Abstract

AbstractRecently, carbazole‐based self‐assembled monolayers (SAMs) have been utilized as hole transport layers (HTLs) in perovskite solar cells. However, their application in Sn or mixed Sn/Pb perovskite solar cells has been hindered by the poor wettability of the perovskite precursor solution on the carbazole surface. Here a self‐assembled bilayer (SAB) comprising a covalent monolayer (Br‐2PACz) and a noncovalent wetting layer (4CzNH3I) as the HTL in a Cs0.25FA0.75Sn0.5Pb0.5I3 perovskite solar cell is proposed. It is demonstrated that the wetting layer completely solves the problem due to the higher polarity of the surface and, furthermore, the ammonium groups help in the passivation of trap states at the buried SAB/perovskite interface. The introduction of the SAB enhances the device reproducibility with an average efficiency of 18.98 ± 0.28% (19.45% for the best device), compared to 11.54 ± 9.36% (19.34% for the best device) for the SAM‐only devices. Furthermore, the improved perovskite processability on the SAB helps to increase the reproducibility of larger size device, where, a 12.5% efficiency for a 0.8 cm2 active area device compared to 0.68% for the best SAM‐based solar cell is demonstrated. Finally, the device's operational stability is also improved to 358 hours (T80%), compared to 220 hours for the SAM‐based solar cell.

Funder

Energimyndigheten

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3