Glycol Monomethyl Ether‐Substituted Carbazolyl Hole‐Transporting Material for Stable Inverted Perovskite Solar Cells with Efficiency of 25.52 %

Author:

Zhou Hui1,Wang Weilin2,Duan Yuwei31ORCID,Sun Rui1,Li Yong1,Xie Zhuang3,Xu Dongfang1,Wu Meizi1,Wang Youliang2,Li Hongxiang4,Fan Qunping5,Peng Yang3,Yao Yao3,Liao Chentong3,Peng Qiang3,Liu Shengzhong1,Liu Zhike1ORCID

Affiliation:

1. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China

2. School of Chemistry Xi'an Jiaotong University 710049 Xi'an P. R. China

3. College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China

4. College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China

5. State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China

Abstract

AbstractOrganic self‐assembled molecules (OSAMs) based hole‐transporting materials play a pivotal role in achieving highly efficient and stable inverted perovskite solar cells (IPSCs). However, the reported carbazol‐based OSAMs have serious drawbacks, such as poor wettability for perovskite solution spreading due to the nonpolar surface, worse matched energy arrangement with perovskite, and limited molecular species, which greatly limit the device performance. To address above problems, a novel OSAM [4‐(3,6‐glycol monomethyl ether‐9H‐carbazol‐9‐yl) butyl]phosphonic acid (GM‐4PACz) was synthesized as hole‐transporting material by introducing glycol monomethyl ether (GM) side chains at carbazolyl unit. GM groups enhance the surface energy of Indium Tin Oxide (ITO)/SAM substrate to facilitate the nucleation and growth of up perovskite film, suppress cation defects, release the residual stress at SAM/perovskite interface, and evaluate energy level for matching with perovskite. Consequently, the GM‐4PACz based IPSC achieves a champion PCE of 25.52 %, a respectable open‐circuit voltage (VOC) of 1.21 V, a high stability, possessing 93.29 % and 91.75 % of their initial efficiency after aging in air for 2000 h or tracking at maximum power point for 1000 h, respectively.

Funder

National Natural Science Foundation of China

Key Research and Development Projects of Shaanxi Province

Sichuan Province Science and Technology Support Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3