Platelet Membrane Fragment Self‐Assembled Oral Hydrogel Microspheres for Restoring Intestinal Microvascular Injury

Author:

Liu Hua1ORCID,Cai Zhengwei2,Wang Fei2,Ruan Huitong2,Zhang Chen1,Zhong Jie1,Wang Zhengting1,Cui Wenguo2ORCID

Affiliation:

1. Department of Gastroenterology Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China

2. Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China

Abstract

AbstractNon‐invasive management of intestinal microvascular injury with hemorrhage under constant biochemical‐mechanical encroachment of luminal contents is a major clinical challenge. Herein, an oral hydrogel microsphere is designed, encapsulating the platelet membrane fragment self‐assembled nanohydrogel fabricated by double‐crosslinking of methacrylated hyaluronic acid and Rebamipide‐loaded dendrimer (Rng@PMS), for self‐localization of hemorrhagic focus and intensive management of intestinal microvascular injury via suppression of inflammation‐mediated tissue injury and reintegration of the damaged mucosal barrier. The results indicate that Rng@PMS effectively adheres to exposed collagen on injured microvasculature and attaches to over 90% of activated macrophages within 10 min, endowing Rng@PMS with a significantly prolonged enteral dwell time (over 24 hours). Importantly, Rng@PMS generated from alginate is designed for oral colon‐targeted delivery to avoid the erosion of gastrointestinal contaminants. In vivo study reveals oral administration of microspheres in murine hematochezia model upregulates the intestinal barrier proteins zonula occludens‐1, Occludin, and muc2, and inhibits infiltration of neutrophils, dendritic cells, and macrophages in hemorrhagic foci, thereby reducing the hematochezia score from 4 to 0.8, and the pathology score from 5.3 to 0.5. Oral microspheres for in situ management of intestinal microvascular injury may be applicable more broadly to noninvasively treat diseases with symptoms of mucosal hemorrhage.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3