Dual‐Crosslinked Bioactive Hydrogel Scaffold for Accelerated Repair of Genital Tract Defect

Author:

Wang Liyang1,Cheng Leong Chi23,Chen Yu1,Zhai Huajuan1,Chen Zhiyong1,Ren Tingting23,Xu Leimei23,Ding Jiandong1,Qiu Junjun23,Hua Keqin23ORCID,Yu Lin1ORCID

Affiliation:

1. State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Shanghai Stomatological Hospital & School of Stomatology Fudan University Shanghai 200438 China

2. Department of Gynecology Obstetrics and Gynecology Hospital of Fudan University Shanghai 200011 China

3. Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases Fudan University Shanghai 200011 China

Abstract

AbstractReproductive health concerns like Mayer‐Rokitansky‐Küster‐Hauser (MRKH) syndrome are prevalent in today's society. MRKH syndrome is a condition that severely affects women's sexual life, fertility, and mental health and has a high prevalence of one out of 5000 female births. Vaginoplasty is the primary method to regain patients’ reproductive health. However, conventional vaginoplasty faces various challenges, including complex and non‐customized treatment procedures causing intense pains and complications. To bring new advances to vaginoplasty, a 3D‐printed hydrogel scaffold is developed to provide satisfactory mechanical support and bioactivity for accelerating defect repair after surgery. The hydrogel scaffold consisting of gelatin methacryloyl (gelMA) and carrageenan (Car) is custom 3D‐printed using an ambient temperature printing system. Furthermore, the scaffold undergoes dual‐crosslinking through chemical crosslinking of gelMA and ionic crosslinking of Car with magnesium ions (Mg2+). This dual‐crosslinking strategy substantially improves the overall mechanical properties of the scaffold and introduces bioactive Mg2+. The sustained release of Mg2+ plus the extracts from the dual‐crosslinked scaffold significantly promotes cell proliferation, migration and angiogenesis. In a preclinical rat model with penetrating genital tract defects mimicking vaginoplasty, the implantation of dual‐crosslinked scaffold repairs the penetrating wounds to near‐normal levels within one week, showing potential as an alternative for better regaining reproductive health.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3