Affiliation:
1. Department of Chemistry Sungkyunkwan University Suwon Gyeonggi 16419 Republic of Korea
2. Department of Electronic Engineering Keimyung University Daegu 42601 Republic of Korea
3. Department of Applied Chemistry University of Seoul Seoul 02504 Republic of Korea
4. Pohang Accelerator Laboratory Pohang University of Science and Technology Pohang Gyeongbuk 37673 Republic of Korea
Abstract
AbstractExtensive research on bulk‐heterojunction (BHJ) optimization has advanced organic photovoltaics (OPVs). However, the need for research addressing the issue of morphological instability and ensuring long‐term durability remains a priority. Herein, a diffusion‐governed morphological modification methodology via a sequential deposition (SD) process comprising ternary components with low miscibility is demonstrated. Sequential coating of a high glass transition temperature (Tg) material and a host binary blend induces a concentration difference between successively coated layers, allowing for effective blending of immiscible materials during solvent evaporation. The enhanced miscibility of the SD‐processed BHJ layer facilitates molecular interactions between the high Tg material and the host materials, thereby increasing the Tg of the BHJ blend. The SD‐processed OPVs exhibit superior photovoltaic performance and suppressed glass transition under thermal stress compared to reference OPVs fabricated via a conventional method. After 500 h of thermal aging at 85 °C, the SD‐BHJ OPV retains over 80% of its initial efficiency, whereas the reference device shows a drastic drop to below 80% of its initial efficiency after only 80 h. This study provides a step toward efficient, long‐term stable OPVs by overcoming the limitations of blend miscibility and poor thermal durability of conventional BHJ systems via a SD process.
Funder
National Research Foundation of Korea
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献