Novel Diffusion‐Regulated Layering Methodology to Improve Blend Miscibility and Thermal Stability of Organic Photovoltaics

Author:

Lee Chihyung1,Jo Hyeon‐Yeong1,Nam Minwoo2ORCID,Hong Janghee3,Kim Gyu‐Hee1,Lee Hyun Hwi4ORCID,Kim Jehan4,Chang Rakwoo3,Ko Doo‐Hyun1ORCID

Affiliation:

1. Department of Chemistry Sungkyunkwan University Suwon Gyeonggi 16419 Republic of Korea

2. Department of Electronic Engineering Keimyung University Daegu 42601 Republic of Korea

3. Department of Applied Chemistry University of Seoul Seoul 02504 Republic of Korea

4. Pohang Accelerator Laboratory Pohang University of Science and Technology Pohang Gyeongbuk 37673 Republic of Korea

Abstract

AbstractExtensive research on bulk‐heterojunction (BHJ) optimization has advanced organic photovoltaics (OPVs). However, the need for research addressing the issue of morphological instability and ensuring long‐term durability remains a priority. Herein, a diffusion‐governed morphological modification methodology via a sequential deposition (SD) process comprising ternary components with low miscibility is demonstrated. Sequential coating of a high glass transition temperature (Tg) material and a host binary blend induces a concentration difference between successively coated layers, allowing for effective blending of immiscible materials during solvent evaporation. The enhanced miscibility of the SD‐processed BHJ layer facilitates molecular interactions between the high Tg material and the host materials, thereby increasing the Tg of the BHJ blend. The SD‐processed OPVs exhibit superior photovoltaic performance and suppressed glass transition under thermal stress compared to reference OPVs fabricated via a conventional method. After 500 h of thermal aging at 85 °C, the SD‐BHJ OPV retains over 80% of its initial efficiency, whereas the reference device shows a drastic drop to below 80% of its initial efficiency after only 80 h. This study provides a step toward efficient, long‐term stable OPVs by overcoming the limitations of blend miscibility and poor thermal durability of conventional BHJ systems via a SD process.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3