Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells

Author:

Xu Xiaopeng1,Jing Wenwen1,Meng Huifeng1,Guo Yuanyuan2,Yu Liyang1,Li Ruipeng3,Peng Qiang1ORCID

Affiliation:

1. School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China

2. Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore

3. National Synchrotron Light Source II Brookhaven National Lab Suffolk Upton NY 11973 USA

Abstract

AbstractConstructing tandem and multi‐blend organic solar cells (OSCs) is an effective way to overcome the absorption limitations of conventional single‐junction devices. However, these methods inevitably require tedious multilayer deposition or complicated morphology‐optimization procedures. Herein, sequential deposition is utilized as an effective and simple method to fabricate multicomponent OSCs with a double‐bulk heterojunction (BHJ) structure of the active layer to further improve photovoltaic performance. Two efficient donor‐acceptor pairs, D18‐Cl:BTP‐eC9 and PM6:L8‐BO, are sequentially deposited to form the D18‐Cl:BTP‐eC9/PM6:L8‐BO double‐BHJ active layer. In these double‐BHJ OSCs, light absorption is significantly improved, and optimal morphology is also retained without requiring a more complicated morphology optimization involved in quaternary blends. Compared to the quaternary blend devices, energy loss (Eloss) is also reduced by rationally matching each donor with an appropriate acceptor. Consequently, the power conversion efficiency (PCE) is improved from 18.25% for D18‐Cl:BTP‐eC9 and 18.69% for PM6:L8‐BO based binary blend OSCs to 19.61% for the double‐BHJ OSCs. In contrast, a D18‐Cl:PM6:L8‐BO:BTP‐eC9 quaternary blend of OSCs exhibited a dramatically reduced PCE of 15.83%. These results demonstrate that a double‐BHJ strategy, with a relatively simple processing procedure, can potentially enhance the device performance of OSCs and lead to more widespread use.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3