A Copper Single‐Atom Cascade Bionanocatalyst for Treating Multidrug‐Resistant Bacterial Diabetic Ulcer

Author:

Fan Xin12,Gao Yang3,Yang Fan4,Low Jian Liang5,Wang Lei2,Paulus Beate5,Wang Yi6,Trampuz Andrej2,Cheng Chong7,Haag Rainer1ORCID

Affiliation:

1. Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany

2. Charité – Universitätsmedizin Berlin Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health 14195 Berlin Germany

3. Department of Ultrasound West China Hospital Sichuan University 610041 Chengdu China

4. Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Germany

5. Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany

6. College of Materials Science and Engineering Nanjing University of Aeronautics and Astronautics 210016 Nanjing China

7. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University 610065 Chengdu China

Abstract

AbstractDiabetic ulcers induced by multidrug‐resistant (MDR) bacteria have severely endangered diabetic populations. These ulcers are very challenging to treat because the local high glucose concentration can both promote bacterial growth and limit the immune system's bactericidal action. Herein, a glucose oxidase‐peroxidase (GOx‐POD) dual‐enzyme mimetic (DEM) bionanocatalyst, Au@CuBCats is synthesized to simultaneously control glucose concentration and bacteria in diabetic ulcers. Specifically, the AuNPs can serve as GOx mimics and catalyze the oxidation of glucose for the formation of H2O2; the H2O2 can then be further catalytically converted into OH via the POD‐mimetic copper single atoms. Notably, the unique copper single atoms coordinated by one oxygen and two nitrogen atoms (CuN2O1) exhibit better POD catalytic performance than natural peroxidase. Further DFT calculations are conducted to study the catalytic mechanism and reveal the advantage of this CuN2O1 structure as compared to other copper single‐atom sites. Both in vitro and in vivo experiments confirm the outstanding antibacterial therapeutic efficacy of the DEM bionanocatalyst. This new bionanocatalyst will provide essential insights for the next generation of antibiotic‐free strategies for combating MDR bacterial diabetic ulcers, and also offer inspiration for designing bionanocatalytic cascading medicines.

Funder

National Natural Science Foundation of China

West China Hospital, Sichuan University

State Key Laboratory of Polymer Materials Engineering

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3