Synthesis of Polynorbornene Based Molecular Self-Assembly for the Detection of Copper Ions Present in the Environmental Water Samples

Author:

Raj* A. Kanni1ORCID

Affiliation:

1. Department of Chemistry, Vel Tech Rangarajan Dr.Sagunthala R and D Institute of Science and Technology, Chennai, Tamil Nidu India.

Abstract

Metal-assisted molecular self-assembly finds applications in optoelectronics, chemical sensing and catalysis. In this article, fluorescein based polynorbornene is synthesized and its molecular self-assembly is used to detect the presence of copper (II) ions in environmental water samples (pond waters). First of all, the sequential procedures of the synthesis of norbornene and polynorbornene are accomplished using simple organic compounds available in the Indian market. Various intermediate compounds and norbornene are characterized by 1H NMR and 13C NMR techniques. Structure of polynorbornene is proved by 1H NMR spectroscope. Molecular weight of polynorbornene is obtained using Acquity advanced polymer chromatography. Particle size of polymer nano-aggregates is derived by using FESEM microscope. This polynorbornene (PNor-Flu) is used for the selective and sensitive detection of the copper(II) ions with an excellent LOD of 0.27 µM, far below the limit decided by the Environmental Protection Agency (EPA) of USA. This is achieved with the help of UV-Vis studies and spectroscopic titrations using OD416/OD350. As far the self-assembly is concerned using microscopic analysis, polynorbornene with a higher number of hydroxyl groups shows rod-like self-assembly. Polynorbornene structure is again transformed to a spherical shape in the presence of the copper(II) ions even in micromolar concentration. From this change, it is believed that the poynorbornene has a high potentiality for sensing the copper(II) ions, which helps it to impart unique morphological properties. From the tests performed on real water samples, polynorbornene has proved its high efficiency of selective and sensitive detective power for detecting copper (II) ions in pond waters.

Publisher

Oriental Scientific Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3