Affiliation:
1. School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 P. R. China
2. Center for Excellence in Nanoscience (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 P. R. China
Abstract
AbstractTin halide lead‐free perovskite solar cells (TPSCs) have received tremendous research interest recently due to their nearly ideal bandgap, broad light absorption, non‐toxicity, and environmental friendliness. However, the uncontrollable crystallization process and the facile oxidation of Sn2+ limit the further increase of power conversion efficiency (PCE). To solve these problems, a series of acetates are introduced into the perovskite precursor solution to regulate the crystallization process. It is revealed that formamidine acetate (FAAc) has strong COSn coordination with Sn2+ compared with acetic acid (HAc) and methylammonium acetate (MAAc), which can stabilize the lattice structure, minimize defect states and suppress the oxidation of Sn2+. Meanwhile, benefiting from this coordination ability, it not only leads to large‐size colloidal clusters in precursor but also slows down the crystallization process and improves the crystallinity of tin halide perovskite films. The device with FAAc achieved an increased PCE from initially 9.84% to 12.43%, and it could maintain 94% of its initial value for 2000 h in N2 atmosphere. This work provides a feasible strategy for depositing high‐quality tin perovskite films with low defect density and lattice distortion, which will be crucial for related photovoltaics and other optoelectronic devices.
Funder
National Natural Science Foundation of China
Sichuan Province Science and Technology Support Program
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献