Abstract
AbstractTo develop photosensitizers with high open-circuit photovoltage (Voc) is a crucial strategy to enhance the power conversion efficiency (PCE) of co-sensitized solar cells. Here, we show a judiciously tailored organic photosensitizer, coded MS5, featuring the bulky donor N-(2’,4’-bis(dodecyloxy)-[1,1’-biphenyl]-4-yl)-2’,4’-bis(dodecyloxy)-N-phenyl-[1,1’-biphenyl]-4-amine and the electron acceptor 4-(benzo[c][1,2,5]thiadiazol-4-yl)benzoic acid. Employing MS5 with a copper (II/I) electrolyte enables a dye-sensitized solar cell (DSC) to achieve a strikingly high Voc of 1.24 V, with the Voc deficit as low as 130 mV and an ideality factor of merely 1.08. The co-sensitization of MS5 with the wider spectral-response dye XY1b produces a highly efficient and stable DSC with the PCE of 13.5% under standard AM1.5 G, 100 mW cm−2 solar radiation. Remarkably, the co-sensitized solar cell (active area of 2.8 cm2) presents a record PCE of 34.5% under ambient light, rendering it very attractive as an ambient light harvesting energy source for low power electronics.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
245 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献