Affiliation:
1. College of Chemistry Xiangtan University Xiangtan Hunan 411105 P. R. China
2. Foshan Green Intelligent Manufacturing Research Institute Xiangtan University Foshan Guangdong 28311 P. R. China
3. State Key Laboratory of Chemical Resource Engineering College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
Abstract
AbstractTaking advantage of the unique structure and properties of gramineous straw that are available across the world in a yearly scale of several hundred million tons, a strategy to design and fabricate flexible high‐performance supercapacitors (SCs) is developed, of which the key components including electrode, separator, and electrolyte are all made from the eulaliopsis binata (EB), a ubiquitous gramineous straw. This kind of all‐in‐one biomass‐based flexible supercapacitors (BFSs) is first proposed, with the cuticle‐derived fibers (EBMs) as a separator, the pith‐derived carbon sponges (EBCs) as an electrode, and the sodium salts of the extracted carboxymethyl cellulose as gel electrolyte. The EBM with uniform diameter size, developed porosity, and abundant ‐OH/‐COOH groups have good flexibility, wettability, and ionic conductivity, far exceeding those of commercial glass‐fiber separators. The EBC has a high level of N/O/S co‐doping and hierarchical porous structure, resulting in enhanced ion accessibility and supercapacitance. With these advantages, the as‐fabricated BFS has shown ultra‐high‐rate performance, high energy density, and excellent flexibility, surpassing the biomass‐derived flexible supercapacitors reported thus far. This novel approach will shed light on the value‐added utilization of biomass from the viewpoint of molecular chemical engineering and product engineering and pave the way for fabricating flexible high‐performance SCs and beyond.
Funder
National Key Research and Development Program of China
Scientific Research Foundation of Hunan Provincial Education Department
Natural Science Foundation of Hunan Province
Basic and Applied Basic Research Foundation of Guangdong Province
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献