Molecular Beam Epitaxy Deposition of In Situ O‐Doped CdS Films for Highly Efficient Sb2(S,Se)3 Solar Cells

Author:

Li Ke12ORCID,Cai Zhiyuan12,Yang Junjie12,Wang Haolin12,Zhang Lijian12,Tang Rongfeng12,Zhu Changfei12,Chen Tao12ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 P. R. China

2. Institute of Energy Hefei Comprehensive National Science Center Hefei 230041 P. R. China

Abstract

AbstractAntimony selenosulfide (Sb2(S,Se)3) is considered as a promising light‐harvesting material and has been widely used in solar cells. For high‐efficiency Sb2(S,Se)3 solar cells, the most commonly used electron‐transporting layer of cadmium sulfide (CdS) is generally prepared by chemical bath deposition (CBD) approach. However, the hazardous waste liquid from the chemical bath and the sensitivity of the deposition process to the environment are challenges to practical applications. Herein, a molecular beam epitaxy deposition is reported to prepare CdS films, overcoming the drawbacks of CBD process. Furthermore, through introducing oxygen during the deposition of CdS, the sulfur vacancy defects generated in the vacuum deposition process are suppressed. The performance of Sb2(S,Se)3 solar cells is accordingly improved significantly. This improvement is attributed to the following aspects: i) the improved optical transmittance of CdS films. ii) The enhanced [hk1] orientation of Sb2(S,Se)3 absorber layer. iii) The improved heterojunction quality and suppressed carrier recombination. As a result, a power conversion efficiency of 8.59% for Sb2(S,Se)3 solar cells is achieved. This study provides a novel strategy for preparing electron‐transporting layers for efficient chalcogenide thin‐film solar cells and sheds new light on large‐area solar cell applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3