An Optimization Path for Sb2(S,Se)3 Solar Cells to Achieve an Efficiency Exceeding 20%

Author:

Xiong Xiaoyong123,Ding Chao2,Jiang Bingfeng3,Zeng Guanggen1,Li Bing1

Affiliation:

1. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China

2. Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China

3. College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China

Abstract

Antimony selenosulfide, denoted as Sb2(S,Se)3, has garnered attention as an eco-friendly semiconductor candidate for thin-film photovoltaics due to its light-absorbing properties. The power conversion efficiency (PCE) of Sb2(S,Se)3 solar cells has recently increased to 10.75%, but significant challenges persist, particularly in the areas of open-circuit voltage (Voc) losses and fill factor (FF) losses. This study delves into the theoretical relationship between Voc and FF, revealing that, under conditions of low Voc and FF, internal resistance has a more pronounced effect on FF compared to non-radiative recombination. To address Voc and FF losses effectively, a phased optimization strategy was devised and implemented, paving the way for Sb2(S,Se)3 solar cells with PCEs exceeding 20%. By optimizing internal resistance, the FF loss was reduced from 10.79% to 2.80%, increasing the PCE to 12.57%. Subsequently, modifying the band level at the interface resulted in an 18.75% increase in Voc, pushing the PCE above 15%. Furthermore, minimizing interface recombination reduced Voc loss to 0.45 V and FF loss to 0.96%, enabling the PCE to surpass 20%. Finally, by augmenting the absorber layer thickness to 600 nm, we fully utilized the light absorption potential of Sb2(S,Se)3, achieving an unprecedented PCE of 26.77%. This study pinpoints the key factors affecting Voc and FF losses in Sb2(S,Se)3 solar cells and outlines an optimization pathway that markedly improves device efficiency, providing a valuable reference for further development of high-performance photovoltaic applications.

Funder

The National Natural Science Foundation of China

The National Key Research and Development Program

The Key Research and Development Program of Sichuan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3