3D Micropatterned Functional Surface Inspired by Salvinia Molesta via Direct Laser Lithography for Air Retention and Drag Reduction

Author:

Tricinci Omar1,Pignatelli Francesca1,Mattoli Virgilio1ORCID

Affiliation:

1. Center for Materials Interfaces Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34 Pontedera 56025 Italy

Abstract

AbstractBioinspired functional surfaces are attracting increasing interest in surface engineering, mostly in the field of wettability. The Salvinia‐effect is a remarkable example of superficial air retention and drag force reduction caused by selective chemical coating (super‐hydrophobic wax and hydrophilic dead cells) and peculiar 3D hierarchical morphological structures. The replication of Salvinia‐like patterns at the microscale has always been prevented by limitations in microfabrication techniques, thus hindering relevant technological applications at this dimensional scale. Integrating 3D laser lithography and traditional microfabrication techniques, dimensionally downscaled, 3D micropatterned surfaces inspired for the first time by both morphology and chemical coating of the hairs present on the Salvinia Molesta leaves are reproduced. The effect of design and different surface energies (bare hydrophilic, hydrophobic, selective hydrophilic/hydrophobic coating) on the wettability are modeled and investigated. Bioinspired surfaces demonstrated to be super‐hydrophobic in terms of apparent static contact angle (up to 170°) and provide tunable adhesion with roll‐off angle from less than 10° to 90°. They successfully proved remarkable underwater air retention capability, sustained by stable Cassie‐Baxter state under external hydrostatic pressure up to 4 atm. The proposed surfaces are tested in hydrodynamic conditions: drag force reduction is successfully demonstrated with up to 40% of energy saved.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3