Superlithiophilic, Ultrastable, and Ionic‐Conductive Interface Enabled Long Lifespan All‐Solid‐State Lithium‐Metal Batteries under High Mass Loading

Author:

Lu Guanjie1,Liu Wei12,Yang Zuguang1,Wang Yumei13,Zheng Weikang4,Deng Rongrui45,Wang Ronghua4,Lu Li3,Xu Chaohe15ORCID

Affiliation:

1. College of Aerospace Engineering Chongqing University Chongqing 400044 China

2. School of Materials Science and Engineering Nanjing University of Science & Technology Nanjing 210094 China

3. National University of Singapore (Chongqing) Research Institute Chongqing 401123 China

4. College of Materials Science and Engineering Chongqing University Chongqing 400044 China

5. National Engineering Research Center for Magnesium Alloys Chongqing University Chongqing 400044 China

Abstract

AbstractGarnet‐type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) suffers from instability against moist air, poor interfacial contact with anode, and serious dendrite issue, which greatly impede its practical application in all‐solid‐state lithium batteries (ASSLBs). Herein, a superlithiophilic, moisture‐resistant, and robust interlayer is demonstrated to overcome these obstacles by in situ forming an AlF3 interlayer on the LLZTO surface. Thanks to the unique property, the AlF3‐modified LLZTO offers a significantly reduced interfacial resistance by more than two orders of magnitude (from 527.5 Ω cm2 for the pristine Li/LLZTO to 1.3 Ω cm2 for the surface‐engineered interface), achieves a critical current density of 1.2 mA cm−2 and long‐term stability of over 4000–4700 h, and endows regulated Li plating/stripping behaviors. Specifically, ASSLBs coupled with LiFePO4 and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes can stably charge/discharge over 400 and 100 cycles at 0.5 and 0.2 C at 25 °C, with retentions of >80.0% and Coulombic efficiencies of >99.9%, respectively. Particularly, the NCM811‐based full ASSLB with large mass loading of 8.3 mg cm−2 also delivers a discharge‐specific capacity as high as 199.1 mAh g−1 with good rate capability, even approaching to the liquid cells. This study demonstrates a practical solution to address the interfacial challenges and paves the way for practical progress of ASSLBs.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3