DNA Origami Signaling Units Transduce Chemical and Mechanical Signals in Synthetic Cells

Author:

Jahnke Kevin12ORCID,Illig Maja1ORCID,Scheffold Marlene1ORCID,Tran Mai P.13,Mersdorf Ulrike4,Göpfrich Kerstin13ORCID

Affiliation:

1. Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 D‐69120 Heidelberg Germany

2. Department of Physics and Astronomy Heidelberg University D‐69120 Heidelberg Germany

3. Center for Molecular Biology (ZMBH) Heidelberg University Im Neuenheimer Feld 329 D‐69120 Heidelberg Germany

4. Department of Biomolecular Mechanisms Max Planck Institute for Medical Research Jahnstraße 29 D‐69120 Heidelberg Germany

Abstract

AbstractTransmembrane proteins transmit chemical signals as well as mechanical cues. The latter is often achieved by coupling to the cytoskeleton. The incorporation of fully engineerable membrane‐spanning structures for the transduction of chemical and, in particular, mechanical signals is therefore a critical aim for bottom‐up synthetic biology. Here, a membrane‐spanning DNA origami signaling units (DOSUs) is designed and mechanically coupled to DNA cytoskeletons encapsulated within giant unilamellar vesicles (GUVs). The incorporation of the DOSUs into the GUV membranes is verified and clustering upon external stimulation is achieved. Dye‐influx assays reveal that clustering increases the insertion efficiency. The transmembrane‐spanning DOSUs act as pores to allow for the transport of single‐stranded DNA into the GUVs. This is employed to trigger the reconfiguration of DNA cytoskeletons within GUVs. In addition to chemical signaling, mechanical coupling of the DOSUs to the internal DNA cytoskeletons is induced. With chemical cues from the environment, clustering of the DOSUs is induced, which triggers a symmetry break in the organization of the DNA cytoskeleton inside of the GUV. DNA‐based transmembrane structures are engineered that transduce signals without transporting the signaling molecule itself—providing a route toward signal processing and adaptive synthetic cells.

Funder

Deutsche Forschungsgemeinschaft

Max-Planck-Gesellschaft

Hector Fellow Academy

Bundesministerium für Bildung und Forschung

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Carl-Zeiss-Stiftung

Joachim Herz Stiftung

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3