Wood‐Like Low‐Tortuosity Thick Electrode for Micro‐Redoxcapacitor with Ultrahigh Areal Energy Density and Steady Power Output

Author:

Zhang Jiabao1,Wang Ke2,Lu Peng2,Gao Jiantou2,Cao Zhiqian3,Mo Funian4,Ho Derek56,Li Bo2,Hu Haibo1ORCID

Affiliation:

1. School of Materials Science and Engineering Anhui University Hefei 230601 China

2. The Institute of Microelectronics Chinese Academy of Sciences Beijing 100029 China

3. School of Chemistry and Materials Science Huaibei Normal University Huaibei 235000 China

4. School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 China

5. Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong 999077 China

6. Hong Kong Center for Cerebro‐Cardiovascular Health Engineering Hong Kong 999077 China

Abstract

AbstractConventional MXene‐based thick electrodes with stacked and tortuous microstructures suffer from sluggish charge transport and low‐utilization of active substances, thus a limited boost in areal energy density of the assembled micro‐supercapacitors (MSCs). Herein, the duplication of wood‐like microstructure is realized in MXene/Ag‐nanowires (AgNWs) hybrid aerogel electrode (WL‐M/A‐AE) via directional freeze‐drying technique. Benefitting from the uniform 3D vertically‐aligned microchannels as the highways for ions transport throughout the matrix, the WL‐M/A‐AE with a thickness of up to 2000 µm can achieve a 50‐times higher of Cl diffusion coefficient relative to closely restacked film electrode with the same mass loading of MXene. Furthermore, the evenly interspersed AgNWs serving as percolation network within the electrode matrix can facilitate horizontal electrons transmission between vertically‐aligned loose MXene flakes, while reversibly capture/release Cl ions via phase conversion (Ag⇔AgCl) to raise the charge storage capacity of the WL‐M/A‐AE. Thus, when coupling with Zn anode, the assembled micro‐redoxcapacitor adopting polyacrylamide/ZnCl2+NH4Cl hydrogel electrolyte can deliver an areal energy density up to 292.5 µWh cm−2 in a more stable way (a smooth discharge plateau contributing 40.9% of the energy). The demonstrated hybrid thick electrode with wood‐like low‐tortuosity microstructure promises an effective avenue for tackling the performance bottlenecks facing traditional MSCs.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Chinese Academy of Sciences

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3