Biomass‐Derived Inks with Tailored Pteridine Derivatives for Sustainable Printed Micro‐Supercapacitors

Author:

Wang Tiansheng12345,Yu Wen45,Wu Dong45,Zhao Weiwei45,Wang Mi45,Xu Jie123,Zhang Jiaheng1456ORCID

Affiliation:

1. School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China

2. Key Laboratory of Micro‐systems and Micro‐structures Manufacturing of Ministry of Education Harbin Institute of Technology Harbin 150001 P. R. China

3. National Innovation Center for Advanced Medical Devices Harbin Institute of Technology Shenzhen 457001 P. R. China

4. Research Centre of Printed Flexible Electronics Harbin Institute of Technology Shenzhen 518055 P. R. China

5. Sauvage Laboratory for Smart Materials School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen Guangdong 518055 P. R. China

6. Department of Chemistry University of Idaho Moscow Idaho 83844‐2343 USA

Abstract

AbstractUsing biological redox compounds holds great potential in designing sustainable energy storage systems, but it is essential for structure optimization of biological redox centers and in‐depth studies regarding their underlying energy storage mechanisms. Herein, a molecular simplification strategy is proposed to tailor the redox unit of pteridine derivatives, an essential component of ubiquitous electron transfer proteins in nature. The tailored pteridine derivatives can be combined with biomass holey graphene (BHG) to fabricate an ink with a micrometer‐scale resolution for printing flexible electrodes for micro‐supercapacitor (MSCs). The reversible tautomerism of pteridine derivatives from alloxazinic to isoalloxazinic structure is first unveiled in supercapacitors. Through molecular tailoring, printed MSC electrodes using pteridine derivatives/BHG ink demonstrate excellent charge storage, outstanding areal capacitance (95.3 mF cm−2 at 0.1 mA cm−2), energy density (16.3 µWh cm−2), power density (208 µW cm−2), long‐term cycling performance (90.5% retention after 10 000 cycles), easy integration, and exceptional flexibility (maintaining capacitance at various bending states). The non‐covalent interaction of tailored pteridine molecules with redox centers and biomass porous graphene suggests a mature screen‐printing technology for fabricating a sustainable energy storage system with a rational MSC configuration.

Funder

National Natural Science Foundation of China

Guangdong Science and Technology Department

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3