Non‐Destructive Tomographic Nanoscale Imaging of Ferroelectric Domain Walls

Author:

He Jiali1,Zahn Manuel12,Ushakov Ivan N.1,Richarz Leonie1,Ludacka Ursula1,Roede Erik D.1,Yan Zewu34,Bourret Edith4,Kézsmárki István2,Catalan Gustau56,Meier Dennis1ORCID

Affiliation:

1. Department of Materials Science and Engineering Norwegian University of Science and Technology (NTNU) Trondheim 7034 Norway

2. Experimental Physics V Center for Electronic Correlation and Magnetism Universität Augsburg 86159 Augsburg Germany

3. Department of Physics ETH Zurich Zurich 8093 Switzerland

4. Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

5. Catalan Institute of Nanoscience and Nanotechnology (ICN2) Campus Universitat Autonoma de Barcelona Bellaterra Catalonia 08193 Spain

6. ICREA‐Institucio Catalana de Recerca i Estudis Avançats Barcelona Catalonia 08010 Spain

Abstract

AbstractExtraordinary physical properties arise at polar interfaces in oxide materials, including the emergence of 2D electron gases, sheet‐superconductivity, and multiferroicity. A special type of polar interface is ferroelectric domain walls, where electronic reconstruction phenomena can be driven by bound charges. Great progress has been achieved in the characterization of such domain walls and, over the last decade, their potential for next‐generation nanotechnology has become clear. Established tomography techniques, however, are either destructive or offer insufficient spatial resolution, creating a pressing demand for 3D imaging compatible with future fabrication processes. Here, non‐destructive tomographic imaging of ferroelectric domain walls is demonstrated using secondary electrons. Utilizing conventional scanning electron microscopy (SEM), the position, orientation, and charge state of hidden domain walls are reconstructed at distances up to several hundreds of nanometers away from the surface. A mathematical model is derived that links the SEM intensity variations at the surface to the local domain wall properties, enabling non‐destructive tomography with good noise tolerance on the timescale of seconds. The SEM‐based approach facilitates high‐throughput screening of materials with functional domain walls and domain‐wall‐based devices, which is essential for monitoring during the production of device architectures and quality control in real‐time.

Funder

Norges Forskningsråd

Ministerio de Educación y Formación Profesional

Studienstiftung des Deutschen Volkes

HORIZON EUROPE European Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Depth resolution in piezoresponse force microscopy;Journal of Applied Physics;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3