Depth resolution in piezoresponse force microscopy

Author:

Roeper Matthias1ORCID,Seddon Samuel D.1ORCID,Amber Zeeshan H.1ORCID,Rüsing Michael12ORCID,Eng Lukas M.13ORCID

Affiliation:

1. Institute of Applied Physics, TU Dresden 1 , Nöthnitzer Strasse 61, 01187 Dresden, Germany

2. Integrated Quantum Optics, Institute for Photonic Quantum Systems (PhoQS), Paderborn University 2 , Warburger Str. 100, 33098 Paderborn, Germany

3. ct.qmat: Dresden-Würzburg Cluster of Excellence—EXC 2147, TU Dresden 3 , 01062 Dresden, Germany

Abstract

Piezoresponse force microscopy (PFM) is one of the most widespread methods for investigating and visualizing ferroelectric domain structures down to the nanometer length scale. PFM makes use of the direct coupling of the piezoelectric response to the crystal lattice, and hence, it is most often applied to spatially map the three-dimensional (3D) near-surface domain distribution of any polar or ferroic sample. Nonetheless, since most samples investigated by PFM are at least semiconducting or fully insulating, the electric ac field emerging from the conductive scanning force microscopy (SFM) tip penetrates the sample and, hence, may also couple to polar features that are deeply buried into the bulk of the sample under investigation. Thus, in the work presented here, we experimentally and theoretically explore the contrast and depth resolution capabilities of PFM, by analyzing the dependence of several key parameters. These key parameters include the depth of the buried feature, i.e., here a domain wall (DW), as well as PFM-relevant technical parameters such as the tip radius, the PFM drive voltage and frequency, and the signal-to-noise ratio. The theoretical predictions are experimentally verified using x-cut periodically poled lithium niobate single crystals that are specially prepared into wedge-shaped samples, in order to allow the buried feature, here the DW, to be “positioned” at any depth into the bulk. This inspection essentially contributes to the fundamental understanding in PFM contrast analysis and to the reconstruction of 3D domain structures down to a 1 μm-penetration depth into the sample.

Funder

Deutsche Forschungsgemeinschaft

Würzburg Dresden Center for Topological Quantum Matter Research

Publisher

AIP Publishing

Reference34 articles.

1. Quantitative electromechanical atomic force microscopy;ACS Nano,2019

2. A. Haußmann , “Ferroelektrische lithografie auf magnesiumdotierten lithium niobat-einkristallen,” Ph.D. thesis (Technische Universität Dresden, 2011).

3. Piezoresponse force microscopy (PFM);J. Phys. D: Appl. Phys.,2011

4. Confinement-driven inverse domain scaling in polycrystalline ErMnO3;Adv. Mater.,2022

5. Strain-gradient mediated local conduction in strained bismuth ferrite films;Nat. Commun.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3