When Mechanical Stress Matters: Generation of Polyploid Giant Cancer Cells in Tumor‐Like Microcapsules

Author:

Antonelli Yasmin1,Krüger René2,Buehler Adrian3,Monavari Mahshid3,Fuentes‐Chandía Miguel34,Colombo Federico1ORCID,Palmisano Ralf5,Boßerhoff Anja K.6,Kappelmann‐Fenzl Melanie67,Schödel Johannes2,Boccaccini Aldo R.3ORCID,Selhuber‐Unkel Christine1ORCID,Letort Gaelle8,Leal‐Egaña Aldo1ORCID

Affiliation:

1. Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany

2. Department of Nephrology and Hypertension Universitätsklinikum Erlangen and Friedrich‐Alexander‐Uniklinikum Erlangen Ulmenweg 18 91054 Erlangen Germany

3. Institute of Biomaterials Friedrich‐Alexander Universität Erlangen‐Nürnberg Cauerstraße 6 91058 Erlangen Germany

4. Department of Biology Skeletal Research Center Case Western Reserve University Cleveland OH 10900 USA

5. Optical Imaging Competence Centre OICE Friedrich‐Alexander Universität Erlangen‐Nürnberg Cauerstraße 3 91058 Erlangen Germany

6. Institute of Biochemistry Emil‐Fischer‐Zentrum, Friedrich‐Alexander Universität Erlangen‐Nürnberg Fahrstraße 17 91054 Erlangen Germany

7. Faculty of Computer Science Deggendorf Institute of Technology 94469 Deggendorf Germany

8. Department of Developmental and Stem Cell Biology Institut Pasteur Université de Paris Cité CNRS UMR 3738, 25 rue du Dr. Roux Paris 75015 France

Abstract

AbstractBiofabrication techniques enable the performance of bioinspired three‐dimensional (3D) matrices resembling primary tumors. To validate their reliability, embedded cells may express complex biophysical responses. Among others, the emergence of tumor heterogeneity and the generation of Polyploid Giant Cancer Cells (PGCC), as a result of the mechanical stress, are two of the most challenging hallmarks to resemble in vitro. Here, these phenomena are studied in cells cultured on two‐dimensional (2D) flasks, in 3D spheroids, or immobilized within 3D polymer‐based tumor‐like microcapsules. These results show that cells cultured in 3D microcapsules exhibited an enhanced biomechanical heterogeneity, a higher number of PGCC, and an increased exertion of cell‐matrix attachment forces with respect to the other two experimental conditions. Additionally, cells isolated from tumor‐like microcapsules redistribute and align the cytoplasmatic protein Caveolin‐1, and upregulate markers involved in cell proliferation (i.e., Ki67), metastasis (i.e., TGF‐β1, TGF‐β‐R2), and epithelial to mesenchymal transition, to name a few. These hallmarks are barely described in the past as a result of the confinement and mechanical stress. Thus, in this work it is demonstrated that both the mechanical stress and confinement are required to stimulate cell polyploidy and biomechanical heterogeneity, which can be easily addressed by immobilizing breast cancer cells in tumor‐like microcapsules.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Volkswagen Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3