Affiliation:
1. Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) Heidelberg University Im Neuenheimer Feld 225 69120 Heidelberg Germany
2. Microfluidics Core Facility Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) Heidelberg University Im Neuenheimer Feld 225 69120 Heidelberg Germany
Abstract
Microfluidic tools enable to investigate and manipulate various chemical and biological processes at small scales. As a result, it finds widespread applications in lab‐on‐chip devices, drug delivery systems, or miniaturized cell cultures. However, microfluidic devices are still limited in their flexibility and are often designed to fulfill a single functionality. Moreover, technologies to introduce dynamic functionalities with high precision and at high resolution after the development of a continuous phase microfluidic chip remain scarce. Herein, two‐photon polymerization direct laser writing is introduced as a suitable approach to equip continuous phase microfluidic chips with structurally defined thermoresponsive poly(N‐isopropyl‐acrylamide) (pNIPAM) microactuators. Harnessing the lower critical phase transition temperature of pNIPAM, and upon controlling specific design parameters, the efficient catch and release of polystyrene beads of different sizes using a pNIPAM micropillar brush array is demonstrated. Moreover, a biocompatible pNIPAM microgripper array is designed to subsequently capture and release differently sized (single) cell populations. Overall, the method offers great flexibility and a high degree of freedom toward the fabrication of dynamic microfluidic devices with great adaptability to experimental conditions in real time.
Funder
Deutsche Forschungsgemeinschaft
Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献