Affiliation:
1. School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China
2. School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
3. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
Abstract
AbstractIntegrating a third component into the binary system is considered to be one of the most effective strategies to further enhance the power conversion efficiency (PCE) in organic solar cells (OSCs). Here, a novel perylene diimide (PDI) derivative featuring 3D structure, TPA‐4PDI, with tetraphenyladamantane central core is developed as a guest electron acceptor to be incorporated into the PM6:Y6 binary system. The champion PCE of ternary OSC is recorded to be 18.29% by adding 7.5 wt.% of TPA‐4PDI in the ternary blend, which photovoltaic performance is enhanced with synergistically increased open‐circuit voltage (Voc) of 0.849 V, short‐circuit current density (Jsc) of 27.55 mA cm−2, and fill factor (FF) of 78.21%. TPA‐4PDI exhibits a complementary absorption band with PM6 and Y6 while its lowest unoccupied molecular orbital (LUMO) energy level falls between the two host materials. The addition of TPA‐4PDI can effectively suppress the recombination behavior, inhibit the excessive aggregation of Y6 and improve the morphology of PM6:Y6 blend. All these effects function synergistically and then lead to the enhancement of Voc, Jsc, and FF in ternary OSCs. This study suggests that developing PDI derivatives as the third component is an effective method to further improve the performance of ternary OSCs.
Funder
National Basic Research Program of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献