High‐Performance Ternary Organic Solar Cells Enabled by Integrating a 3D‐Shaped Guest Acceptor Derived from Perylene Diimide

Author:

Liu Ming1,Ge Xianxian1,Jiang Xingjian1,Guo Fengyun1,Gao Shiyong1,Peng Qiang2,Zhao Liancheng1,Zhang Yong13ORCID

Affiliation:

1. School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China

2. School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China

3. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China

Abstract

AbstractIntegrating a third component into the binary system is considered to be one of the most effective strategies to further enhance the power conversion efficiency (PCE) in organic solar cells (OSCs). Here, a novel perylene diimide (PDI) derivative featuring 3D structure, TPA‐4PDI, with tetraphenyladamantane central core is developed as a guest electron acceptor to be incorporated into the PM6:Y6 binary system. The champion PCE of ternary OSC is recorded to be 18.29% by adding 7.5 wt.% of TPA‐4PDI in the ternary blend, which photovoltaic performance is enhanced with synergistically increased open‐circuit voltage (Voc) of 0.849 V, short‐circuit current density (Jsc) of 27.55 mA cm−2, and fill factor (FF) of 78.21%. TPA‐4PDI exhibits a complementary absorption band with PM6 and Y6 while its lowest unoccupied molecular orbital (LUMO) energy level falls between the two host materials. The addition of TPA‐4PDI can effectively suppress the recombination behavior, inhibit the excessive aggregation of Y6 and improve the morphology of PM6:Y6 blend. All these effects function synergistically and then lead to the enhancement of Voc, Jsc, and FF in ternary OSCs. This study suggests that developing PDI derivatives as the third component is an effective method to further improve the performance of ternary OSCs.

Funder

National Basic Research Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3