Polymer‐Confined Pyrolysis Promotes the Formation of Ultrafine Single‐Phase High‐Entropy Alloys: A Promising Electrocatalyst for Oxidation of Nitrogen

Author:

Guo Hele12,Guo Zhongyuan3,Chu Kaibin1,Zong Wei14,Zhu Han1,Zhang Leiqian1,Liu Chuangwei5,Liu Tianxi1,Hofkens Johan26,Lai Feili26ORCID

Affiliation:

1. The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering International Joint Research Laboratory for Nano Energy Composites Jiangnan University Wuxi 214122 P. R. China

2. Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium

3. College of Environmental and Resource Sciences Zhejiang University Hangzhou 310058 P. R. China

4. Christopher Ingold Laboratory Department of Chemistry University College London 20 Gorden Street London WC1H 0AJ UK

5. Key Lab for Anisotropy and Texture of Materials (MoE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China

6. Department of Molecular Spectroscopy Max Planck Institute for Polymer Research 55128 Mainz Germany

Abstract

AbstractHigh‐entropy alloys (HEAs) made up of multiple metallic elements have gained attention for their excellent electrocatalytic performance. However, their application in the field of nitrogen (N2) oxidation reaction (NOR) remains underexplored. In this study, a “pomegranate‐like” carbon embedded with ultrafine AuPdPtRhIr HEA (HEA@C) is synthesized using a polymer‐confined pyrolysis strategy. Molecular dynamics (MD) simulations show that small‐sized metal nanoparticles formed by the confinement of polyvinyl alcohol (PVA) during the hydrothermal process can easily form a single‐phase HEA through a thermodynamically‐driven solid‐phase diffusion process during subsequent pyrolysis. Additionally, a porous carbon layer which in situ converted from the PVA shell can effectively inhibit the agglomeration of HEA nanoparticles and confine the surrounding N2. Experimentally, the HEA@C nanohybrid demonstrates a satisfactory NO3 yield rate of 23.8 µg h−1 mgcat.−1 and a high Faraday efficiency of 13.8% for the NOR process. By using operando Fourier Transform Infrared spectroscopy, online differential electrochemical mass spectrometry (DEMS), and density functional theory calculations, potential efficient active sites (Rh–Ir–o) and pathways for the electrochemical conversion of inert N2 to NO3 are revealed. This research provides an effective strategy for producing highly dispersed ultrafine HEA nanoparticles, showing a wide range of applications in advanced electrocatalysis.

Funder

National Natural Science Foundation of China

Program of Shanghai Academic Research Leader

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3