Ferromagnetic Fiber Systems for Multiplexing Neural Recording and Modulation with Spatial Selectivity

Author:

Song Hao1,Liu Yuxin1,Li Jing2,Liu Zijian1,Yang Anqi1,Lu Baicheng1,Zhou Yajing1,Duan Junhan1,Li Jialong1,He Jufang2,Chen Xi2,Lin Xudong1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐sen University Shenzhen 518107 China

2. Department of Biomedical Sciences & Department of Neuroscience City University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China

Abstract

AbstractDespite the great success achieved by recently developed neural interfaces, multi‐site monitoring and regulating neural activities with high spatial and temporal selectivity remain a challenge. Here, an implantable, remotely controllable, fiber‐based ferromagnetic system permitting 3D navigation, omnidirectional steering, multiplexing neural recording, and modulation is presented. A family of fibers is fabricated that allows for the heterogeneous integration of ferromagnetic, optical, microfluidic, electrical, and electrochemical components into the proposed multifunctional neural interface. Coupling with magnetic actuation, it is demonstrated that this system can enable optical and chemical modulation of local neural activities across multiple distant regions in rodent brains, while simultaneously allowing the real‐time monitoring of neural electrophysiological and chemical activities. Furthermore, to systematically identify altered patterns of behaviors, brain activities and dopamine release during optogenetic modulation of specific nuclei in Parkinsonian animals this platform is employed. This proposed system with high spatial selectivity, multiplexing sensing and multimodal manipulating capabilities offers a versatile platform to advance both fundamental neuroscience studies and translational applications in neurologic disease treatments.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3