Immobilizing Poly(vinylphenothiazine) in Ketjenblack‐Based Electrodes to Access its Full Specific Capacity as Battery Electrode Material

Author:

Tengen Bärbel12ORCID,Winkelmann Timo13,Ortlieb Niklas4567,Perner Verena1,Studer Gauthier89,Winter Martin110,Esser Birgit6789ORCID,Fischer Anna4567,Bieker Peter110ORCID

Affiliation:

1. MEET Battery Research Center Institute of Physical Chemistry University of Münster Corrensstr. 46 48149 Münster Germany

2. Faculty of Physical Chemistry, Corrensstr. 28–30 and Center for Soft Nanoscience (SoN) University of Münster Busso‐Peus‐Str. 10 48149 Münster Germany

3. REDcert GmbH Schwertberger Str. 16 53177 Bonn Germany

4. Institute of Inorganic and Analytic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany

5. Freiburg Center of Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany

6. Freiburg Materials Research Center (FMF) University of Freiburg Stefan‐Meier‐Str. 21 79104 Freiburg Germany

7. Cluster of Excellence livMatS University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany

8. Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany

9. Institute of Organic Chemistry II and Advanced Materials Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany

10. Helmholtz‐Institute Münster IEK‐12 Forschungszentrum Jülich GmbH Corrensstr. 46 48149 Münster Germany

Abstract

AbstractOrganic batteries are considered as environmentally friendly alternative to lithium‐ion batteries due to the application of transition metal‐free redox‐active polymers. One well‐established polymer is poly(3‐vinyl‐N‐methylphenothiazine) (PVMPT) with a fast reversibility of the electrochemical redox reaction at a potential of 3.5 V versus Li|Li+. The oxidized PVMPT is soluble in many standard battery electrolytes, which diminishes its available specific capacity but at the same time can lead to a unique charge/discharge mechanism involving a redeposition process upon discharge. Herein, the influence of different conductive carbon additives and their properties, e.g., specific surface area, pore size distribution, and electrical conductivity, on the dissolution behavior of oxidized PVMPT is investigated. Compared to the state‐of‐the‐art conductive carbon Super C65 employed in many organic battery electrodes, Ketjenblack EC‐300J and EC‐600J reduce the dissolution of the oxidized PVMPT due to better immobilization on the carbon additive and in the resulting 3D structure of the electrode, as assessed by N2‐physisorption, electrochemical, UV–vis spectroscopy and scanning electron microscopy investigations. The studies demonstrate that a dense packing of the carbon particles in the electrode is decisive for the stable immobilization of PVMPT while maintaining its long‐term cycling performance.

Funder

Deutsche Forschungsgemeinschaft

Deutsche Bundesstiftung Umwelt

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3