Two‐Electron Phenothiazine Based Cathode Achieved by Raising HOMO Energy Level for High Performance Lithium Organic Battery

Author:

Zhang Sen1,Cai Jia1,Li Heyang1,Xing Fangfang1,Chen Ling1,Wang Xiujuan1,He Xiaoming1ORCID

Affiliation:

1. Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China

Abstract

AbstractRedox‐active p‐type phenothiazine based organic cathodes have captured increasing attention for lithium‐organic batteries due to their high voltage output and rich chemical modification. However, their capacities are generally limited to one redox event per molecule; while the di‐cation states are subject to rapid decomposition and cannot be effectively utilized. Herein, a scalable synthesis of phenothiazine‐based polymer (MPT‐CC) is reported, that can fully utilize the two‐electron storage by raising its highest occupied molecular orbital (HOMO). Lithium‐organic batteries using this polymer as cathode displayed a high specific capacity of 178 mAh g−1 at 0.2 A g−1. This polymer also displays excellent cycling stability. After 1000 cycles at 0.2 A g−1, a stable capacity of 194 mAh g−1 with ≈100% capacity retention can be obtained. Even at 2 A g−1 after 10,000 cycles, 98 mAh g−1 can be reversibly achieved. Its practical applicability has been successfully demonstrated in MPT‐CC//graphite full cell, also displaying good performance. This work contributes to a major advancement of phenothiazine‐based polymer design for high performance energy storage devices.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3