Affiliation:
1. Research Center for Electrochemical Energy Storage Technologies Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. China
2. Institute of Solid State Physics Leibniz University Hannover 30167 Hannover Germany
3. Laboratory of Nano and Quantum Engineering (LNQE) Leibniz University Hannover 30167 Hannover Germany
Abstract
AbstractRoom‐temperature sodium–sulfur (RT Na–S) batteries have emerged as a promising candidate for next‐generation scalable energy storage systems, due to their high theoretical energy density, low cost, and natural abundance. However, the practical applications of these batteries are hindered by the notorious shuttle effect of soluble sodium polysulfides (NaPSs) and sluggish reaction kinetics, which result in fast performance loss. To address this issue, recent studies have reported impressive achievements of transition metal nanoparticles/single atoms/cluster/compounds (TM)‐based host materials with strong adsorption and catalyzation to NaPSs. These materials can significantly improve the electrochemical performance of RT Na–S batteries. In this review, the recent progress on TM‐based host materials for RT Na–S batteries, including iron (Fe)‐, cobalt (Co)‐, nickel (Ni)‐, molybdenum (Mo)‐, titanium (Ti)‐, vanadium (V)‐, manganese (Mn)‐, and other TM‐based materials are summarized. The design, fabrication, and properties of these host materials are comprehensively summarized and systematically analyzed the underlying chemical inhibition and electrocatalysis mechanism between NaPSs and TM‐based catalytic materials. At last, the challenges and prospects for designing efficient TM‐based catalytic materials for high‐performance RT Na–S batteries are discussed.
Funder
Niedersächsisches Ministerium für Wissenschaft und Kultur
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献