Regulating Electron Filling and Orbital Occupancy of Anti‐Bonding States of Transition Metal Nitride Heterojunction for High Areal Capacity Lithium–Sulfur Full Batteries

Author:

Liu Jintao1,Yu Lianghao1,Ran Qiwen2,Chen Xi'an1ORCID,Wang Xueyu1,He Xuedong1,Jin Huile1,Chen Tao3,Chen Jun Song2,Guo Daying1,Wang Shun1

Affiliation:

1. Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China

2. School of Materials and Energy University of Electronic Science and Technology of China Chengdu 610054 P. R. China

3. CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China No. 96 Jinzhai Road Hefei 230026 P. R. China

Abstract

AbstractThe commercialization of lithium–sulfur (Li–S) battery is seriously hindered by the shuttle behavior of lithium (Li) polysulfide, slow conversion kinetics, and Li dendrite growth. Herein, a novel hierarchical p‐type iron nitride and n‐type vanadium nitride (p‐Fe2N/n‐VN) heterostructure with optimal electronic structure, confined in vesicle‐like N‐doped nanofibers (p‐Fe2N/n‐VN⊂PNCF), is meticulously constructed to work as “one stone two birds” dual‐functional hosts for both the sulfur cathode and Li anode. As demonstrated, the d‐band center of high‐spin Fe atom captures more electrons from V atom to realize more π* and moderate σ* bond electron filling and orbital occupation; thus, allowing moderate adsorption intensity for polysulfides and more effective d–p orbital hybridization to improve reaction kinetics. Meanwhile, this unique structure can dynamically balance the deposition and transport of Li on the anode; thereby, more effectively inhibiting Li dendrite growth and promoting the formation of a uniform solid electrolyte interface. The as‐assembled Li–S full batteries exhibit the conspicuous capacities and ultralong cycling lifespan over 2000 cycles at 5.0 C. Even at a higher S loading (20 mg cm−2) and lean electrolyte (2.5 µL mg−1), the full cells can still achieve an ultrahigh areal capacity of 16.1 mAh cm−2 after 500 cycles at 0.1 C.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3