Affiliation:
1. College of Electronic and Information Engineering Qingdao University Qingdao 266071 P. R. China
2. National Laboratory of Solid State Microstructures, Physics Department Nanjing University Nanjing 210093 P. R. China
Abstract
AbstractThe flexible biomimetic sensory system inspired by biology exhibits learning, memory, and cognitive behavior toward external stimuli, providing a promising direction for the future development of the artificial intelligence industry. In this work, a Zn‐TCPP (TCPP: tetrakis (4‐carboxyphenyl) porphyrin) based flexible memristor with ultra‐low both operating voltage (≈80 mV) and power consumption (0.39 nW) that simulates typical synaptic plasticities, under continuously adjustable ultra‐low voltage pulses (50 mV). The synaptic properties are well maintained even when bending 1000 times at a radius of 5 mm. Furthermore, the flexible bionic sensing system integrated with Zn‐TCPP based memristor and cotton fibre piezoresistive sensor can remember pressure and deformation current, thus simulate the learning‐forgetting‐relearning characteristics under mechanical stimuli (power supply = 100 mV). Especially, the system achieves a high recognition rate of 97% for gestures through self‐built datasets and neural network calculations and remains at a high level under the influence of 10% Gaussian noise (80%) and 5 mm bending state (91%). Consequently, the ultralow‐power flexible biomimetic sensing system shows great potential in the field of integrated artificial intelligence with multiple modules, paving the way for the development of low‐power biomimetic robots in the future.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
National Laboratory of Solid State Microstructures, Nanjing University
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献